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ABSTRACT 

The design and implementation of software for 
networked systems of diverse physical assets is a 
continuing challenge to robotic and network sensor 
developers.  The problems are often multiplied when 
reconfiguring or adding new elements to existing designs 
in order to meet the demands of changing tactics and 
missions, and to meet new requirements for 
interoperability and additional capabilities.  Systems are 
often designed in a way such that configuration and 
reconfiguration may be difficult, time consuming, and 
costly.  Interoperability between new and legacy systems 
may require significant changes to the code and design of 
a system.  Static or closed designs can lead to a system 
that is difficult to add new sensors or payloads to.  In this 
paper, we describe a design approach that utilizes Model 
Driven Engineering (MDE), the OSGi Service 
Platform framework (OSGi), and an open, flexible 
services oriented architecture to maximize software 
reuse and to ensure rapid development of new features 
and capabilities to meet the changing requirements for 
unmanned systems. 

 
1.  INTRODUCTION 

1.1  Model Driven Engineering 

Model Driven Engineering focuses on abstractions 
particular to the application problem space and expresses 
designs in terms of concepts from that space (Schmidt, 
2006).  MDE combines software components to conform 
to specific design patterns with Domain Specific 
Languages.  These languages describe a Meta Model, 
often graphical, that defines the relationships of 
abstractions in the domain.  Domain engineers then create 
concrete instances of the Meta Model using icons that 
represent available services and components for the 
composition of the final design.  Using this completed 
design, program generators assemble the services and 
components and create the glue code that allows them to 
work together as a single, cohesive system. 

Figure 1 shows a Meta Model for a robot system 
done using the open source Generic Modeling 
Environment (GME).  The model is done using the 
Unified Modeling Language (UML).  In this case, the top 

level model element is labeled “Robot”.  The robot Meta 
Model contains both messages and artifacts – abstract 
services with no implementation defined.  Five different 
atoms provide possible implementations of artifacts.  
Artifacts can send or receive zero or more different 
messages. 

 
Figure 1: Simple Meta Model for a Robot 

The Meta Model shown in figure 1 may be used to 
create a domain specific composition as shown in figure 
2.  The model in figure 2 has three robots, a leader and 
two followers.  Each robot has a GPS positioning sensor 
and the two followers have distance sensors.  The 
waypoint driver control computer computes waypoints for 
the two followers based on the input from the five 
sensors, and passes new messages to the primitive driver 
to control the two follower robots. 

 

 
Figure 2: Domain Model for Multiple Robot System 

1 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 NOV 2006 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
A Design Approach For Dynamic Reconfiguration Of Unattended
Sensors, Unmanned Systems, And Monitoring Stations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
TARDEC Robotics Mobility Lab Warren, MI 48397-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM002075., The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1.2.  OSGi and Services Oriented Architecture 

From the OSGi alliance website (OSGi Alliance, 
2006), “OSGi technology provides a service-oriented, 
component-based environment for developers and offers 
standardized ways to manage the software lifecycle. 
These capabilities greatly increase the value of a wide 
range of computers and devices that use the Java™ 
platform.”  A basic setup using OSGi involves four main 
levels – the hardware, the Java Virtual Machine (JVM), 
the OSGi framework, and the application layer.  The 
hardware is essentially any device capable of running 
some form of JVM that and implementation of the OSGi 
framework can run on, whether it be a scaled down 
version of Java for embedded processors to the full Java 
Runtime Environment that one would see on a PC.  The 
JVM is the runtime environment on top of which the 
OSGi service framework runs.  The OSGi framework 
provides the environment that manages the lifecycle of 
“bundles” of code, or components.  One or more 
components define a feature, such as a primitive driver for 
a robot.  The OSGi framework supports a Services 
Oriented Architecture through its service registry – 
providing a way for components running in the OSGi 
execution environment to look up other services they need 
is a loosely coupled way. 

A Services Oriented Architecture (SOA) is an 
architecture that is based on services.  Services define a 
contract that any object implementing that service must 
follow.  This allows for a variety of implementations of 
the same service.  This is one of the key benefits of using 
SOA in the OSGi runtime environment – different 
implementations of the same service can be used 
depending on the situation.  This creates a loose coupling 
between components, so, for example, if one needed to 
switch to using Ethernet communications as opposed to 
serial communications, the switch would be trivial as long 
as both communications features implement the same 
service contract.  The ability to remotely deploy new 
bundles of code into running OSGi framework 
environments also contributes to ensuring interoperability, 
so if a new requirement came out for a change to a 
communications component for example, a new 
implementation of the communications service could be 
sent out to the device running the OSGi framework and 
replace the older service without requiring significant 
changes in other components due to the loose coupling of 
services.  Figure 4 in section 2.2.2 shows an example of 
components running on a robot/sensor in an OSGi 
runtime. 

 
2.  MAXIMIZING SOFTWARE REUSE, ENSURING 

INTEROPERABILITY, AND DYNAMIC 
RECONFIGURABILITY 

The combination of Model Driven Engineering 
(MDE), use of the OSGi service platform, and use of a 
Services Oriented Architecture (SOA) is a powerful and 
very valuable combination for unmanned system and 
sensor development.  MDE provides the software 
reusability and ease of configuration by allowing users to 
take pre-existing models that correspond to automatic 
generation of code and using them to create or modify 
complete systems.  The OSGi + SOA combination 
provides the reconfigurability and helps ensure future 
interoperability because of its loose coupling of services, 
ability for remote deployment of new or updated features, 
and because it allows multiple implementations of the 
same service to remain invisible to the features requiring 
that service. 
 
2.1  Model Driven Engineering Approach 

 
Figure 3: Diagram of Model Drive Engineering 

Process 

Figure 3 shows the MDE approach we take visually as a 
block diagram of high level abstractions.  The placement 
of the abstractions indicates a progression from a flexible 
sub-architecture in the realm of the software engineer at 
the bottom, to a generic sub-architecture in the realm of 
the robotic/unattended sensor engineer in the middle, and 
finally to the user/evaluator realm at the top of the figure.  
The MDE approach is critical to reuse of software and 
efficient, domain level design of software systems. 

2.1.1  Code Base 
The code base block on the left of figure 3 represents 

some abstract storage mechanism, which could be a 
database, files, or some other mechanism.  Code (in this 
case services and their implementations that will run in 
the OSGi environment) is stored in this storage 
mechanism and is used in the MDE approach. 

2.1.2  Foundation 
The block at the very bottom of figure 3 represents 

the foundation for the MDE design approach – it includes 
tools, guidelines, requirements, standards, etc.  This 
foundation is used as a base for higher levels in the MDE 
process. 
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2.1.3  Components 
Above the foundation in figure 3, but still in the 

realm of the software engineer lie a set of blocks that 
represent reusable components.  These components are 
stored in the code base when completed.  Systems are 
composed using these components.  Components can be 
added and removed as time goes on, but new Meta 
Models must be created to take advantage of the new 
components.  These components can be implementations 
of one or more services. 

2.1.4  Meta Model 
The third block up from the bottom of figure 3 

represents the Meta Models.  This is the spine of the MDE 
architecture.  Meta Models are created by software 
engineers with knowledge of the domain or software 
engineers collaborating with domain experts (i.e. a 
software engineer collaborating with a  robotic systems 
expert).  The Meta Model encapsulates high level 
information about the system and defines component 
relationships and constraints. 

2.1.5  Domain Model 
The fourth block up in figure 3 is the domain specific 

modeling tool.  This tool is generated from the Meta 
Model – it is a workspace from which concrete models of 
the system under construction may be instantiated, and is 
the level at which the domain expert operates. 

2.1.6  Composition/Generation 
The composition/generation block is where 

everything is put together – components in the domain 
model are assembled together by a domain expert to 
create the software necessary for the system to establish 
some task.  This leads to the final block at the top of 
figure 3, the node code, which is the actual code needed 
to run the software for the system. 
 
2.2  OSGi and a Service Oriented Architecture (SOA) 
for Ensuring Interoperability and Reconfigurability 

Using the OSGi framework with a Services Oriented 
Architecture (SOA) is the second piece of the puzzle of 
ensuring software reuse, interoperability, and 
reconfigurability.  The OSGi + SOA combination is the 
key factor on top of the MDE approach to making 
unmanned systems and sensors easy and quick to 
reconfigure and update, and efficient to add new features 
to, including upgrades that support interoperability with 
new standards, communications, and hardware. 

2.2.1  OSGi – Managing the Lifecycle of Components 
Components created using the MDE design approach 

are eventually deployed as services to an OSGi runtime 
environment running on a target unmanned system, 
sensor, or other device.  These OSGi compliant 
components can be deployed from some data/code storage 
location either from the machine running the OSGi 

environment itself, or from some remote location over a 
network or other communications link.  The OSGi 
runtime manages components that can be dynamically 
installed, started, stopped, updated and uninstalled.  This 
means that as new or updated features are created, they 
can be deployed to the runtime environment on a robot or 
unattended sensor with little or no impact to proper 
function of the robot or unattended sensor.  Using OSGi 
along with the library of services that can be created 
through the MDE design approach leads to the capability 
to rapidly develop and reconfigure components for remote 
deployment to an unmanned system or sensor.  Along 
with a loosely coupled SOA, this leads to the ability to 
ensure that new features and payloads can rapidly be 
added to robots or sensor networks, and to make sure that 
code can quickly be updated to comply with changing 
standards and requirements. 

2.2.2  Using a Services Oriented Architecture with OSGi 
to Ensure Interoperability and Dynamic 
Reconfigurability 

Generating components that implement services in 
the MDE design approach and using those service 
provides (components) in the OSGi runtime on a robot, 
unattended sensor, or other device allows for a very easy 
way to make sure that as standards and requirements 
change, that a robot or unattended sensor can keep up 
with those requirements.  Figure 4 illustrates a simple 
Services Oriented Architecture based environment 
running on a robot using an OSGi framework. 

 
Figure 4: OSGi Setup on a Robot/Sensor using a 

Services Oriented Architecture 
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In figure 4, there are two implementations of a 
Communications (Comms) Service – these are 
components running in the OSGi runtime environment.  
For each of these components, there is configuration 
information indicating that they are registering that they 
export a Comms Service.  This is essentially telling the 
Service Registry in the OSGi runtime environment that if 
any other component requires a Comms Service, both of 
these two implementations can provide that service.  In 
the case of figure 4, there are several components that 
need a Comms Service to talk to the outside world, 
perhaps an OCU.  Let us call one of these components 
requiring Comms Service the Robot Commander. The 
Robot Commander doesn’t care how it communicates – 
all it  knows is that it needs some implementation of a 
Comms Service.  The actual way that one of the services 
is picked is dependent on the OSGi environment and user 
preference, but it could be based on some configuration 
data, the most current version of a service could be used, 
or a random service could be grabbed if no negative 
effects were expected.  It is because of the ability to 
update or deploy new components into the OSGi runtime, 
along with the loose coupling of the Robot Commander to 
the Comms Service implementation, that making sure 
systems stay interoperable is relatively simple.  In this 
case, if we were required to change the way we do 
communications with the Robot Commander due to 
requirements for talking to new systems, all we would 
have to do is create a new component that complies with 
the new requirement and deploy it to the OSGi runtime 
environment on the robot.  The Robot Commander could 
then use that new Comms implementation without 
requiring any changes to itself since the new 
communicator implements and exposes the Comms 
Service that the Robot Commander needs. 
 
2.3  MDE + OSGi + SOA – Wrapping them All 
Together 

Generalizing the example of figure 4, it is easy to see 
how combining the use of MDE, OSGi, and SOA leads to 
unmanned systems and sensors that can be rapidly 
developed, easily reconfigured, and kept up to date with 
new interoperability standards and features.  Using the 
MDE design approach allows significant reuse of code 
and reduction of effort by storing components created in a 
code base.  If these components are designed as OSGi 
compliant service implementations, then they can be 
remotely deployed to an OSGi runtime environment on a 
robot or sensor device and can register the services that 
they provide for use by other components in the 
environment.  By having components only depend on 
services and not implementations, updating capabilities, 
including adding new features or making changes to 
ensure interoperability, can be done by simply deploying 
new components that expose the required services for use 
by existing components.  This section is a somewhat high 
level description of the key concepts of software reuse, 

ensuring interoperability, and reconfigurability – section 3 
uses a detailed concrete example to better show how the 
MDE + OSGi + SOA works. 

 

3.  EXAMPLE: UNMANNED SYSTEM DESIGN 
USING MDE, OSGI, AND SOA 

In this section, we describe a situation in which we 
have a simple robot that we need to design software for.  
Initially, the robot has the following design: a Driver for 
steering and driving around and a Communicator that 
receives drive commands.  The design also includes a  
Bump Sensor which we initially do not have – when the 
Bump Sensor is present, it can be used to prevent drive 
commands from running the robot into a non-passable 
boundary.  The Bump Sensor utilizes a 360 degree Sonar 
Sensor to determine when it is about to “bump”.  There is 
also an OCU that sends the drive commands to the robot’s 
Driver through the Communicator. 

We first describe how we use the MDE design 
approach to define a Meta Model for the robot, including 
its Driver and Communicator components.  After that, we 
add a new capability, the bump sensor, and show how 
utilizing SOA and OSGi it can rapidly and seamlessly be 
integrated into the robot system.  After that, a new 
requirement comes in to make the robot JAUS compliant 
and able to receive JAUS drive commands from the OCU 
– this shows how using OSGi and SOA, along with 
reusing components from the original MDE design 
process, we can rapidly reconfigure the robot to make 
sure it is interoperable with JAUS OCUs and other JAUS 
robots.  Finally, we summarize the entire process and 
discuss its extension to use on a real robot. 
 
3.1  MDE Approach to Create Robot System 

We step through figure 3 to lay out step by step the 
MDE design approach for creating the robot system that 
we desire. 

3.1.1  Code Base 
In this case, the code base will consist of java 

components written to implement service contracts.  The 
services that will be implemented are the Communicator 
Service, the Driver Service, Sonar Service, and a Bump 
Sensor Service.  Each implementation of these services 
will be packaged as a jar for deployment into the OSGi 
runtime environment. 

3.1.2  Foundation 
We will use the Generic Modeling Environment 

software (GME, 2006), an open source, visual, and 
configurable environment for creating Domain Specific 
Modeling languages, to develop our Meta Model.  The 
Eclipse IDE will be used for working with Java code and 
for using the Equinox OSGi (Eclipse, 2006) runtime for 
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deploying bundles to – this is also chosen because it is 
widely used and open source.  The domain model will be 
represented by XML once completed.  For now, our robot 
will be simulated in a Java-based simulation environment, 
but later sub-sections will explain how the combination of 
OSGi + SOA would allow quick transition into a real 
robot. 

3.1.3  Components 
For the initial design of the robot, we need the 

following components: Driver implementing Driver 
Service and Simple Communicator implementing 
Communicator Service.  Initially, we will not have a 
bump sensor component, but will still need to define the 
Bump Sensor Service for use by the Driver – in this case 
we use a Fake Bump Sensor that always indicates nothing 
is being bumped, effectively letting the Driver function 
without a filter checking for collisions.  The Sonar Sensor 
will implement a Sonar Service, and will be used by the 
bump sensor.  The Driver will move the robot around the 
simulated environment, and the communicator will 
receive messages from an OCU containing drive 
commands as simple text messages like 
“message=drive&xeffort=[XEFFORT]&yeffort=[YEFFO
RT]&rotation=[ROTATION]”.  Xeffort is the effort as a 
percentage total possible speed that the robot should move 
in the x direction, and yeffort is the percentage of the total 
possible speed of the robot in the y direction.  Rotation is 
the rotational speed of the robot in rad/s.  Figure 5 in 3.1.5 
illustrates graphically the setup of the robot system. 

3.1.4  Meta Model 
We use the Meta Model in figure 1 for this example.  

We will have a number of sensors on our robot, and it will 
communicate with the OCU.  These objects and their 
relationships to each other are defined in the Meta Model 
in figure 1. 

3.1.5  Domain Model 
The Domain Model we use descends from the Meta 

Model of figure 1.  We have defined a number of 
components based on the Meta Model of figure 1.  Figure 
5 shows the Domain Model for our simulated robot 
system.  We will have a robot (“ODIS”) containing the 
Driver and Communicator connected to an OCU.  It will 
make use of a Bump Sensor (“BumpControl”) to act as a 
filter for the Driver – when implemented, the Bump 
Sensor will use a simulated 360 degree sonar to determine 
when something is “bumped”.  As can be seen, this 
Domain Model is a simple block diagram that can easily 
be assembled with someone with knowledge of robotics 
but without any software engineering expertise.  The 
blocks (and masked sub-blocks) shown in figure 5 are 
also placed into the code base as available components for 
deployment. 

 
Figure 5: Robot Bump Control Domain Model 

To create this Domain Model, we, in the role of the 
Domain Engineer, have connected the components with 
arrows representing information paths and overrode the 
default naming attributes. 

3.1.6  Composition/Generation 
The output of the Domain Model we have created is a 

specification for an application based on constraints and 
relationships from the Meta Model and manipulation of 
the model by us in the role as the Domain Engineer. A set 
of components forming our robot application is generated 
from the specification that is outputted from the domain 
model, along with the information from the Meta Model.  
These components are now available in the code base, and 
are ready for deployment. 
 
3.2  Deployment of Components to OSGi Runtime 
Environment on Robot 

We now have generated the code needed to run on 
the robot through the MDE process.  What needs to be 
done now is to deploy the components that have been 
developed onto the robot.  For now, since we are 
simulating the robot, the components will be deployed to 
the same platform as the code base storage.  We use the 
Equinox framework from Eclipse (Eclipse, 2006) as our 
OSGi implementation.  

For code base storage, we are currently just storing a 
set of jars representing the various components in a folder 
on the file system.  At startup, the equinox platform is 
only running some core platform jars – we must add our 
components to the runtime so that they may be started and 
used.  We simply install each component jar into the 
runtime environment – at this point they are not active, 
but they do contain information about what services they 
provide, what services they need, and other configuration 
and deployment information.  We can now tell the 
Equinox runtime to start the individual components – 
using configuration files packaged with the component 
jars, components that depend on certain services (like 
how the Driver requires the Communicator Service) will 
look for that service in the runtime environment and start 
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it if found (in our case, since we have installed all 
components, it is found).  Now that all the components 
have been started, we have a functional (simulated) robot 
that can drive around the simulation environment using its 
Driver, and can receive commands from an OCU or other 
source using the Simple Communicator.  In this case, the 
OCU is just a simple java app, but it could easily also 
have its own OSGi runtime environment and be using the 
same Communicator Service and components as the 
robot.  Figure 6 shows how components running in the 
robot’s OSGi runtime depend on each other – dashed 
lines indicate components that are not in the initial 
deployment, but will be put on the robot in place of 
another component for various reasons in Case 1 and 
Case 2 to follow. 

 
Figure 6: Diagram of the Components Running on the 

Robot and the Service they Implement/Use 

 
3.3  Case 1: Addition of a Real Bump Sensor 

As we run the simulation environment with the OCU 
providing commands to the simulated robot, we notice 
that it is possible to drive the robot into the boundaries 
(walls) of the simulation.  Clearly, running into walls in 
the real world is not desired, and we’d like to find a way 
to prevent this in the simulation that can be applied to a 
real robot.  We now add a real bump sensor to the robot to 
replace the simple fake one.  The Bump Sensor serves as 
a filter for the Driver component – if the bump sensor 
indicates the robot is running into something, its status 
will change and the Driver will use that status to override 
the command from the OCU and stop the robot before it 
makes impact with the wall. 

Using the MDE process and OSGi with a Service 
Oriented Architecture, it is a simple and elegant process 
to implement this real bump sensor.  First, the domain 
model must be updated to use a real Bump Sensor 
component in place of the generic fake one.  This can be 
done at the domain specific level by the robot engineer 

assuming a real Bump Sensor component already exists in 
the code base.  The Fake Bump Sensor running in the 
OSGi runtime on the robot is next stopped and/or 
uninstalled remotely or locally, and the new Bump Sensor 
is sent to the robot either from a local or remote code 
storage source.  Since both the Fake Bump Sensor and the 
real Bump Sensor implement the same Bump Sensor 
Service, the transition will be seamless to the Driver 
component that is using the Bump Sensor Service – it will 
now be able to use the new Bump Sensor and get accurate 
information on when it is bumping into a wall or other 
obstacle. 
 
3.4  Case 2: JAUS Requirement Added 

Up until now, we have been using a Simple 
Communicator that uses basic text based messages.  This 
simulates what might be a proprietary or legacy 
communications method.  Using the architecture and 
methods we have explained, updating this to meet a new 
JAUS requirement is very straightforward.  JAUS, the 
Joint Architecture for Unmanned Systems (soon to be an 
SAE standard) is a message-passing architecture for 
communications among unmanned systems (JAUS 
Working Group, 2006).  All we must do is replace the 
Simple Communicator with a new JAUS Communicator 
just as we did for the Bump Sensor.  Again, since the 
JAUS Communicator implements the Communicator 
Service just like the Simple Communicator did, the 
change will be transparent to all components that depend 
on having a Communicator Service and the robot will 
now be interoperable with JAUS.  Another thing to note is 
that if we wanted to have an even looser coupling in our 
system, we could have each component depend only on a 
single messaging service – each component could bind to 
this service and send messages through it, allowing the 
messaging service to route messages as needed and send 
messages in the proper format (i.e. custom format vs. 
JAUS standard). 
 
3.5  Summary and Extension to a Real Robot 

In this section, we have shown how using a 
combination of Model Driven Engineering with a runtime 
environment of OSGi and a Services Oriented 
Architecture, that applications for unmanned systems and 
sensors can rapidly be developed and deployed, both 
locally and remotely.  However, we have used a simulated 
robot – clearly, we want to apply this to real robots.  This 
is where we see the true power of using the Service 
Oriented Architecture.  As already seen through addition 
of the real Bump Sensor and JAUS Communicator, it is a 
simple process to add new implementation of services to 
the runtime on a robot, unattended sensor, or other device 
that is running an OSGi runtime.  The fact that we are 
using a Services Oriented Architecture where components 
depend on services and not specific implementations 
allows us to create very flexible and upgradeable systems.  
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If we know that there are sensors or payloads that we will 
want to use or support, but do not have available at the 
time, we can use a simulated version of that device until a 
real one is available.  This allows for an environment of 
simulated and real devices in which testing can be done 
even if not all the necessary hardware is available at the 
time.  Adding new hardware is also simple, as the 
communications, transport, and device code needed can 
be remotely sent to the OSGi runtime when needed.  
Updates can be as simple as adding the new component 
and binding it to a messaging service that all components 
talk to each other through – i.e. a new JAUS component 
could be added to a robot and “hooked up” to a JAUS 
messaging service that routes JAUS messages to their 
proper destinations. 

 
4.  RELATED WORK 

4.1 Chrysler AG 

Czarnecki, Bednasch, Unger and Eisenecker report 
on their experience at Chrysler AG for automotive and 
satellite applications (Czarnecki et al, 2002). They 
describe their experience with Model Driven Design and 
Feature Modeling tool support with the GME tool.   

The feature model has a root or concept node and 
child nodes. The child nodes or sets of child nodes are 
mandatory, optional, alternative or “or” features.  The 
nodes are combined in various ways to produce an 
instance of a concept.  For example, a car (concept) can 
have a manual, automatic or CV transmission, but only 
one transmission.  A car may also have a fossil fuel 
motor, and electric motor or both. 

In the referenced work, they present a UML Meta 
Model for feature modeling notation using GME.  They 
also show a derived domain specific model, also using 
GME. 
4.2 Embedded System Control Language 

Additional work at Vanderbilt University uses the 
GME tool, along with Mathworks Simulink and 
Stateflow tools to create the Embedded Control Systems 
Language (ESQL) to support development of distributed 
embedded automotive application (GME, 2006).  ESQL 
imports the Simulink/Stateflow models into the GME 
environment.  ESQL is a graphical modeling language for 
with a suite of sublanguages.  Sublanguages are provided 
to support functional modeling, component modeling, 
hardware topology modeling and deployment mapping. 

The ECSL also has a code generation component. 
The generated artifacts can synthesize the entire 
application behavior code, or external application 
behavior code can be linked in. 

4.3 TARDEC Robotics Mobility Lab (TRML) 
Innovative Laboratory Internal Research (ILIR) 

The TRML, in cooperation with the Naval 
Postgraduate School (NPS) is conducting research into 
software reuse via composable components and graphical 
configuration languages.  This work is the basis for the 
MDE portions of this paper.   

The major difference between this effort and the two 
cited above is the target users and target life cycle time.  
The above tools are being designed for software 
engineering production departments.  The TRML effort is 
targeting Domain engineers, early in the system lifecycle.  

Prototype systems are typically created in response to 
evolving requirements or to evaluate emerging 
technologies, such as sensors or mission packages.  In 
some cases, rapid prototypes and/or simulations are 
necessary to evaluate procurement proposals.   

The main goals of the TRML efforts are to capture 
and encapsulate software engineering expertise into a 
tool.  The tools we are creating extend the software 
engineers knowledge in a constrained environment 
operated by Domain engineers to rapidly create prototype 
systems.  

 
4.4  National Automotive Center’s Pervasive 
Computing Lab. 

The OSGi and Services Oriented Architecture 
approaches in this paper are based on similar ongoing 
work at the National Automotive Center’s Pervasive 
Computing Lab.  The work has involved integration of 
various sensors and other applications on to both vehicle 
and hand held (tablet PC) platforms under a project called 
Cyrano.  Using the OSGi and SOA concepts described in 
this paper, we have been able to rapidly develop 
applications for vehicle diagnostics using data from the 
vehicle bus, situational awareness, chemical and radiation 
sensors, GPS, and a wide variety of other devices and 
communications protocols.  Using a Services Oriented 
Architecture with OSGi has allowed us to very quickly 
develop applications based on customer feedback and 
requirements, in as little as a week or two.  The SOA 
architecture also allows us to utilize simulated and fake 
devices and sensors interchangeably with the real things, 
as some of the devices are often unavailable,  expensive, 
or provided on a time-limited basis. 

 
5.  FUTURE WORK 

Future work with MDE includes implementation of 
the design environment for prototyping a series of robotic 
systems.  Beginning with simple models, robot 
simulations and very coarse grained components, the 
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simple models presented earlier will be realized.  
Continuing, the Meta Models will be refined to include 
lower level component composition.  A set of robotic 
artifacts (platforms, controls, OCU’s etc.) will have their 
interfaces wrapped to conform to the JAUS standard. A 
collection of instrumentation components will be created, 
as well as several different communications components; 
UDP/IP and serial to begin with.  As we grow more 
confident with the Meta Models and domain specific 
models, additional artifacts such as mission packages and 
manipulators will be included both in simulation and 
physically. 

Future work involving the OSGi and SOA concepts 
of this paper will focus mainly on deployment of 
applications of the concepts onto actual robot platforms.  
This may involve integration with the related work that 
has been done with sensor integration on vehicle and 
tablet PC platforms.  A robot could easily be integrated as 
another application to augment the sensor information and 
other applications of project Cyrano – the OCU could in 
this case be the preexisting user interface on a tablet PC 
or any other computing device supporting an OSGi 
runtime.  Farther in the future, work would include use of 
an OSGi runtime on a fully functional, useable robot (as 
opposed to just a research platform) with the goal to 
create a robot based on a flexible, open architecture that is 
easy and cost effective to update and reconfigure. 

 
6.  CONCLUSIONS 

In this paper, we have detailed and demonstrated 
through example three key concepts for development of 
unmanned systems and sensors – Model Driven 
Engineering, OSGi, and a Services Oriented Architecture.  
We have shown that, by using a Model Driven 
Engineering approach, components can be developed by 
software engineers and then combined into a system by 
someone with domain level expertise (i.e. a robotics 
engineer) but without a lot of software engineering 
experience.  We have shown that by basing these 
components on a Services Oriented Architecture, we can 
create extremely flexible and reconfigurable designs that 
allow for a mix of simulated and real hardware, which is 
extremely powerful during testing and development.  
Finally, we have shown how using OSGi along with a 
Services Oriented Architecture allows us to rapidly 
deploy new features to robotic systems and unattended 
sensors in order to help ensure they remain interoperable 
with other systems, and rapidly update their capabilities 
when needed.  All of these concepts combine to allow us 
to rapidly develop and update unmanned systems and 
sensors as soon as requirements and feedback come in. 
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